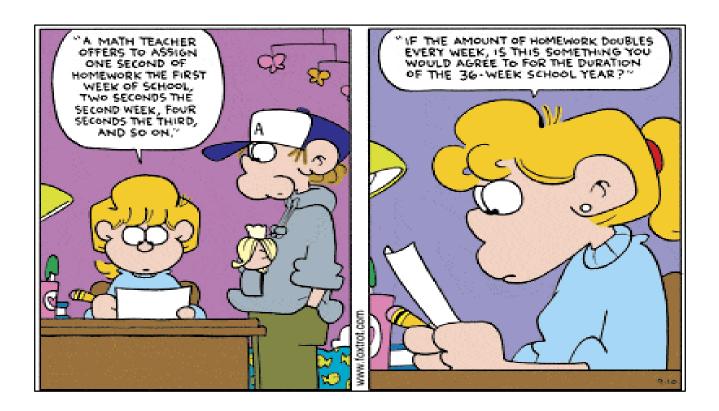
Algebra 2 Chapter 7

EXPONENTIAL AND LOGARITHMIC FUNCTIONS

Algebra II 7

- This Slideshow was developed to accompany the textbook
 - Larson Algebra 2
 - By Larson, R., Boswell, L., Kanold, T. D., & Stiff, L.
 - 2011 Holt McDougal
- Some examples and diagrams are taken from the textbook.

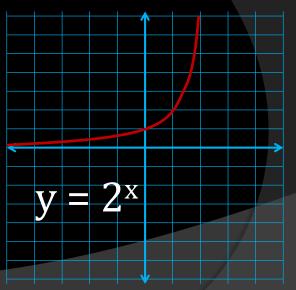
Slides created by Richard Wright, Andrews Academy rwright@andrews.edu

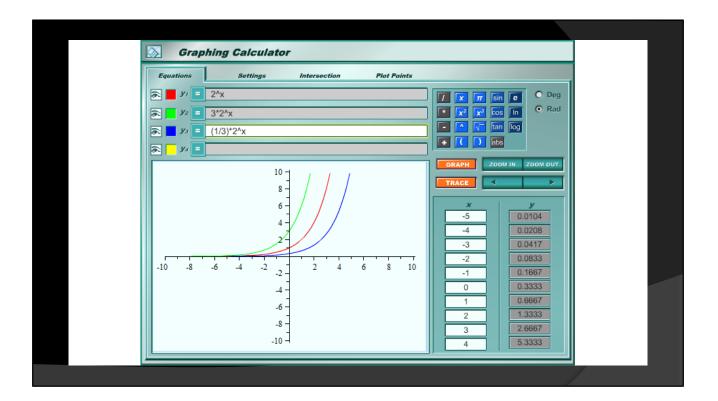


How much work will be done the last week of school? Formula is 2^{n-1}

Plug in 36: $2^{36-1} = 3.436 \times 10^{10}$ seconds \rightarrow 9544371.769 hours \rightarrow 397682.157 days \rightarrow 1088.8 years

- Exponential Function
 - $y = b^x$
 - Base (b) is a positive number other than 1





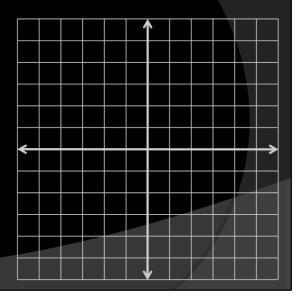
Graph y=2^x y=1/3 * 2^x y=3*2^x y=-3*2^x

- \bullet y = a \cdot 2^x
 - y-intercept = a
 - x-axis is the asymptote of graph

- Exponential Growth Function
 - $y = a \cdot b^{x-h} + k$
- To graph
 - Start with $y = b^x$
 - Multiply y-coordinates by a
 - Move up k and right h
 - (or make table of values)

- Properties of the graph
- y-intercept = a (if h and k=0)
- y = k is asymptote
- Domain is all real numbers
- Range
 - y > k if a > 0
 - y < k if a < 0

- Graph
- $y = 3 \cdot 2^{x-3} 2$

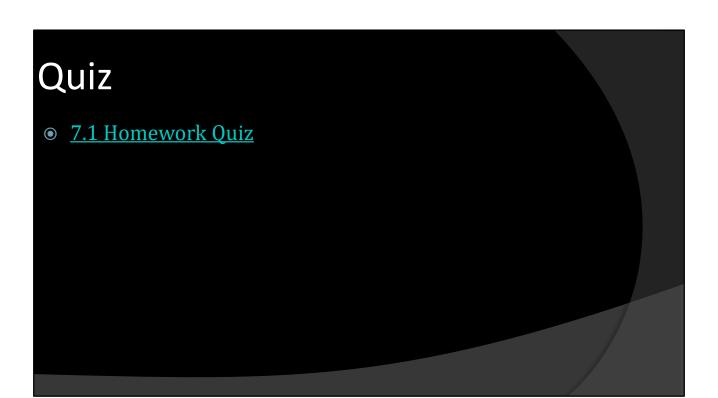


- Exponential Growth Model (word problems)
 - $y = a(1 + r)^t$
 - o y = current amount
 - o a = initial amount
 - r = growth percent
 - \circ 1 + r = growth factor
 - t = time

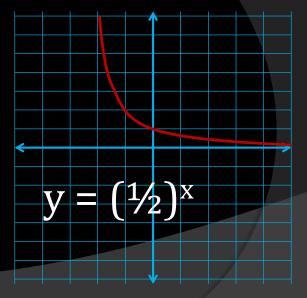
- Compound Interest
- - A = current amount
 - P = principle (initial amount)
 - r = percentage rate
 - o n = number of times compounded per year
 - t = time in years

• If you put \$200 into a CD (Certificate of Deposit) that earns 4% interest, how much money will you have after 2 years if you compound the interest monthly? daily?

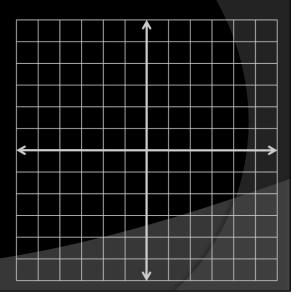
Monthly: $200(1+.04/12)^{12*2} = 216.63 Daily: $200(1+.04/365)^{365*2} = 216.66



- Exponential Decay
 - $y = a \cdot b^x$
 - a > 0
 - 0 < b < 1
- Follows same rules as growth
 - y-intercept = a
 - y = k is asymptote
 - $y = a \cdot b^{x-h} + k$



- Graph

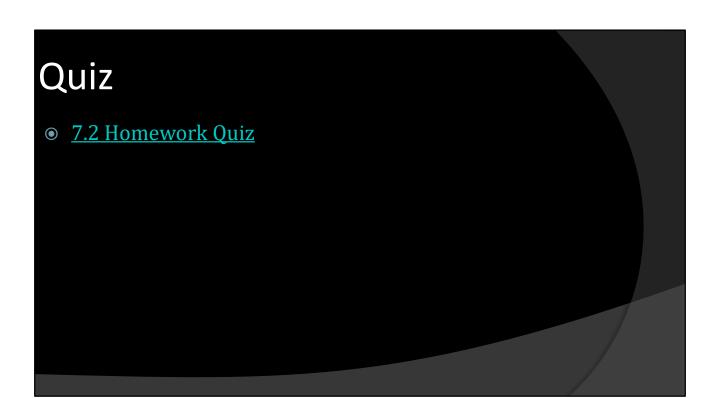


- Exponential Decay Model (word problems)
 - $y = a(1 r)^t$
 - y = current amount
 - o a = initial amount
 - r = decay percent
 - 1 r = decay factor
 - \circ t = time

• A new car cost \$23000. The value decreases by 15% each year. Write a model of this decay. How much will the car be worth in 5 years? 10 years?

```
y = 23000(1-0.15)^{t} \rightarrow y = 23000(0.85)^{t}
```

5 years: $y = 23000(0.85)^5 = 10205.22 10 years: $y = 23000(0.85)^{10} = 4528.11



- In math, there are some special numbers like π or i
- Today we will learn about e

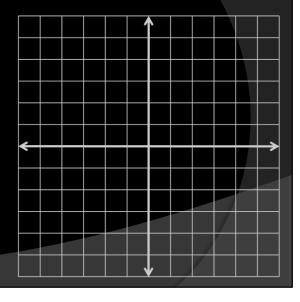
- e
 - Called the natural base
 - Named after Leonard Euler who discovered it
 - (Pronounced "oil-er")
 - Found by putting really big numbers into $\left(1 + \frac{1}{n}\right)^n = 2.718281828459...$
 - Irrational number like π

- Simplifying natural base expressions
- $(2e^{-5x})^{-2}$
- Just treat *e* like a regular variable

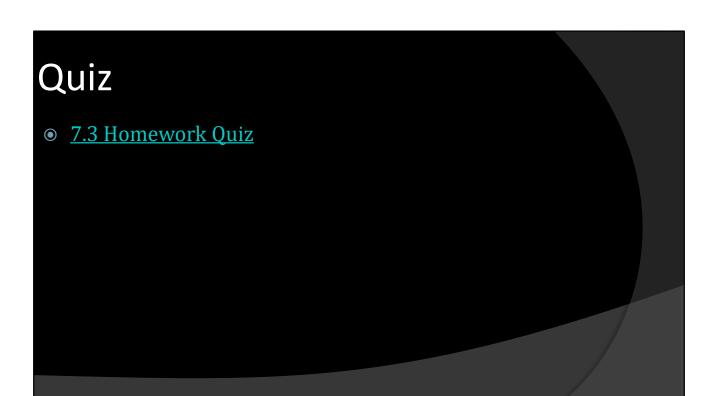
- Evaluate the natural base expressions using your calculator
- \bullet e^3
- \bullet $e^{-0.12}$

 $e^3 = 20.085537$ $e^{-0.12} = 0.88692044$

- To graph make a table of values
- \bullet f(x) = a·e^{rx}
 - a > 0
 - If $r > 0 \rightarrow$ growth
 - If $r < 0 \rightarrow decay$
- Graph $y = 2e^{0.5x}$



- Compound Interest
- $\bullet \quad A = P\left(1 + \frac{r}{n}\right)^{nt}$
 - A = current amount
 - P = principle (initial amount)
 - r = percentage rate
 - n = number of times compounded per year
 - t = time in years
- Compounded continuously
 - $A = Pe^{rt}$



- Definition of Logarithm with Base b
- Read as "log base b of y equals x"
- Rewriting logarithmic equations
- $\log_3 9 = 2$
- $\log_8 1 = 0$
- $\log_5(1/25) = -2$

$$3^2 = 9$$

 $8^0 = 1$
 $5^{-2} = 1/25$

- Special Logs
 - $\log_b 1 = 0$
 - $\log_b b = 1$
- Evaluate
 - log₄ 64
 - $\log_2 \frac{1}{8}$
 - $\log_{1/4} 256$

```
Rewrite \log_b 1 = 0 \rightarrow b^0 = 1

Rewrite \log_b b = 1 \rightarrow b^1 = b

Rewrite \log_4 64 = x \rightarrow 4^x = 64 \rightarrow x = 3

Rewrite \log_2 0.125 = x \rightarrow 2^x = 1/8 \rightarrow x = -3

Rewrite \log_{1/4} 256 = x \rightarrow (\frac{1}{4})^x = 256 \rightarrow 4^{-x} = 256 \rightarrow 4^{-x} = 4^4 \rightarrow -x = 4 \rightarrow x = -4
```

- Using a calculator
- Common Log (base 10)
 - $\bullet \ \log_{10} x = \log x$
 - Find log 12
- Natural Log (base e)
 - $\log_e x = \ln x$
 - Find ln 2

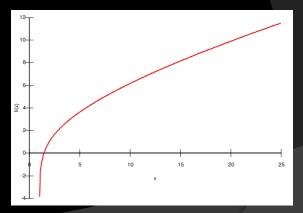
1.0792 0.6931

- When the bases are the same, the base and the log cancel
- $5^{\log_5 7} = 7$
- \circ $\log_3 81^x$
- \bullet = 4 χ

- Finding Inverses of Logs
- $x = \log_8 y$ Switch x and y
- $y = 8^x$ Rewrite to solve for y
- To graph logs
 - Find the inverse
 - Make a table of values for the inverse
 - Graph the log by switching the x and y coordinates of the inverse.

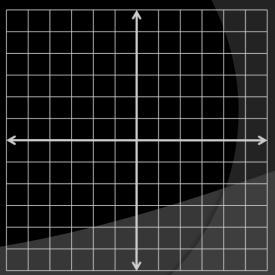
7.4 Evaluate Logarithms and Graph Logarithmic Functions Properties of graphs of logs

- \bullet y = log_b (x h) + k
 - x = h is vert. asymptote
 - Domain is x > h
 - Range is all real numbers
 - If b > 1, graph rises
 - If 0 < b < 1, graph falls



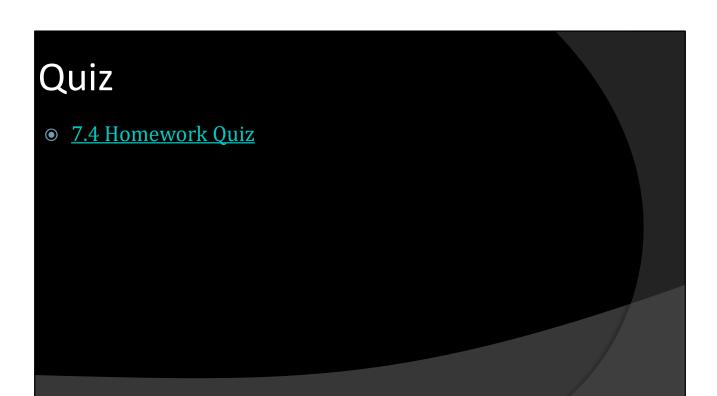
- Graph
 - $y = log_2 x$
 - Inverse
 - $x = log_2 y$
 - $y = 2^x$

x	y
-3	1/8
-2	1/4
-1	1/2
0	1
1	2
2	4
3	8



Graph the points with x and y switched

- (1/8, -3)
- (1/4, -2)
- (1/2, -1)
- (1, 0)
- (2, 1)
- (4, 2)
- (8, 3)



7.5 Apply Properties of Logarithms

- Product Property
 - $\log_b uv = \log_b u + \log_b v$
- Quotient Property
 - $\log_b \frac{u}{v} = \log_b u \log_b v$
- Power Property
 - $\log_b u^n = n \log_b u$

7.5 Apply Properties of Logarithms

- Use $\log_9 5 = 0.732$ and $\log_9 11 = 1.091$ to find
 - $\log_9 \frac{5}{11}$
 - log₉ 55
 - log₉ 25

```
log_9 5/11 \rightarrow log_9 5 - log_9 11 \rightarrow 0.732 - 1.091 \rightarrow -0.359

log_9 55 \rightarrow log_9 (5.11) \rightarrow log_9 5 + log_9 11 \rightarrow 0.732 + 1.091 \rightarrow 1.823

log_9 25 \rightarrow log_9 5^2 \rightarrow 2 log_9 5 \rightarrow 2(0.732) \rightarrow 1.464
```

7.5 Apply Properties of Logarithms

- Expand: log₅ 2x⁶
- \odot Condense: $2 \log_3 7 5 \log_3 x$

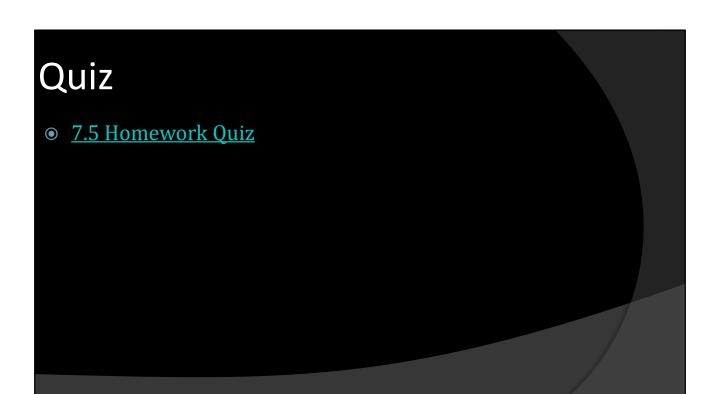
$$log_5 2 + log_5 x^6 \rightarrow log_5 2 + 6 log_5 x$$

 $log_3 7^2 - log_3 x^5 \rightarrow log_3 (49/x^5)$

7.5 Apply Properties of Logarithms

- Change-of-Base Formula
 - $\log_c u = \frac{\log_b u}{\log_b c}$
- Evaluate log₄ 8

$$\log_4 8 = (\log 8)/(\log 4) = 1.5$$



- Solving Exponential Equations
 - Method 1) if the bases are equal, then exponents are equal
 - $2^{4x} = 32^{x-1}$

$$2^{4x} = 2^{5(x-1)} \rightarrow 4x = 5(x-1) \rightarrow 4x = 5x - 5 \rightarrow -x = -5 \rightarrow x = 5$$

- Solving Exponential Equations
- Method 2) take log of both sides
- $4^x = 15$

$$\log 4^x = \log 15 \rightarrow x \log 4 = \log 15 \rightarrow x = \log 15 / \log 4 \rightarrow x = 1.95$$

 $5^{x+2} = 22 \rightarrow \log 5^{x+2} = \log 22 \rightarrow (x+2) \log 5 = \log 22 \rightarrow x+2 = \log 22 / \log 5 \rightarrow x = -0.079$

- Solving Logarithmic Equations
 - Method 1) if the bases are equal, then logs are equal
 - $\log_3 (5x 1) = \log_3 (x + 7)$

$$5x-1=x+7 \rightarrow 4x = 8 \rightarrow x = 2$$

- Solving Logarithmic Equations
 - Method 2) exponentiating both sides
 - Make both sides exponents with the base of the log
 - $\log_4(x+3) = 2$

$$4^{(\log_4 (x+3))} = 4^2 \rightarrow x+3 = 16 \rightarrow x = 13$$

$$\log_2 2x + \log_2(x - 3) = 3$$

$$\log_2(2x \cdot (x - 3)) = 3$$

$$2x(x - 3) = 2^3$$

$$2x^2 - 6x - 8 = 0$$

$$x^2 - 3x - 4 = 0$$

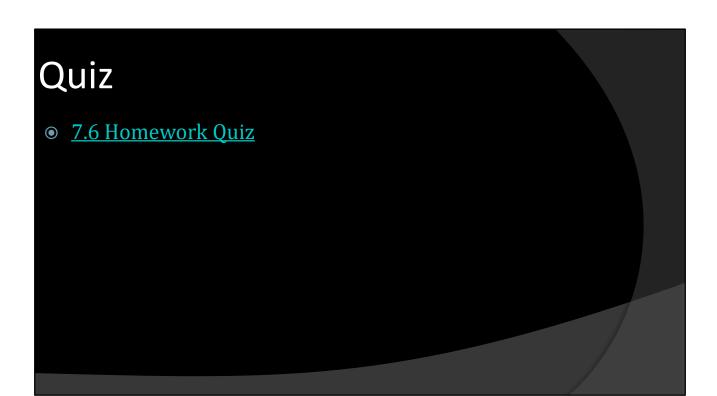
$$(x - 4)(x + 1) = 0$$

$$x - 4 = 0, x + 1 = 0$$

$$x = 4, -1$$

$$-1 \text{ extraneous}$$

Solution x=4



 Just as 2 points determine a line, so 2 points will determine an exponential equation.

- Exponential Function
 - $y = a b^x$
- If given 2 points
 - Fill in both points to get two equations
 - Solve for a and b by substitution

 Find the exponential function that goes through (-1, 0.0625) and (2, 32)

```
0.0625 = ab^{-1} \rightarrow 0.0625 = a/b \rightarrow a = 0.0625b

32 = ab^{2}

Substitute

32 = (0.0625b)b^{2} \rightarrow 32 = 0.0625b^{3} \rightarrow 512 = b^{3} \rightarrow b = 8

a = 0.0625b \rightarrow a = 0.0625(8) = 0.5

y = 0.5 * 8^{x}
```

- Steps if given a table of values
 - Find ln y of all points
 - Graph ln y vs x
 - Draw the best fit straight line
 - Pick two points on the line and find equation of line (remember to use ln y instead of just y)
 - Solve for y
- OR use the ExpReg feature on a graphing calculator
 - Enter points in STAT → EDIT
 - Go to STAT \rightarrow CALC \rightarrow ExpReg \rightarrow Enter \rightarrow Enter

- Writing a Power Function
 - $y = a x^b$
- Steps are the same as for exponential function
 - Fill in both points to get two equations
 - Solve for a and b by substitution

• Write power function through (3, 8) and (9, 12)

```
8 = a3^b \rightarrow a = 8 / 3^b

12 = a 9^b
```

Substitute

```
12 = (8/3^{b})9^{b} \rightarrow 12 = 8 (9^{b}/3^{b}) \rightarrow 12 = 8 (9/3)^{b} \rightarrow 12 = 8 3^{b} \rightarrow 12/8 = 3^{b} \rightarrow \log 3/2 = \log 3^{b} \rightarrow \log 3/2 = \log 3/2 + \log 3/2 + \log 3/2 = 0.369

a = 8/3^{b} \rightarrow a = 8 / 3^{0.369} \rightarrow a = 16/3

y = 16/3 \times x^{0.369}
```

- Steps if given a table of values
 - Find ln y and ln x of all points
 - Graph ln y vs ln x
 - Draw the best fit straight line
 - Pick two points on the line and find equation of line (remember to use ln y and ln x instead of just y)
 - Solve for y
- OR use the PwrReg feature on a graphing calculator
 - Enter points in STAT → EDIT
 - Go to STAT → CALC → PwrReg → Enter → Enter

